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We introduce Markov models for segmentation of symbolic sequences, extending a segmentation procedure
based on the Jensen-Shannon divergence that has been introduced earlier. Higher-order Markov models are
more sensitive to the details of local patterns and in application to genome analysis, this makes it possible to
segment a sequence at positions that are biologically meaningful. We show the advantage of higher-order
Markov-model-based segmentation procedures in detecting compositional inhomogeneity in chimeric DNA
sequences constructed from genomes of diverse species, and in application to the E. coli K12 genome, bound-
aries of genomic islands, cryptic prophages, and horizontally acquired regions are accurately identified.
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I. INTRODUCTION

The genome of an organism is a linear or circular DNA
molecule and can be represented as a symbolic string in the
alphabet �A,T,C,G�, corresponding to nucleotides adenine,
thymine, cytosine, and guanine. At present the complete ge-
nomes of nearly 400 organisms are known �1�, and this
makes their detailed and extensive analysis possible both at
an individual as well as at a comparative level �2�. Studies
over the past two decades have revealed that the genome
typically houses a variety of distinctive and diverse features,
all of which taken together constitute the “blueprint” for an
organism �3�. Some of these features are functionally impor-
tant: protein coding sequences, regulatory sequences, oper-
ons, promoters, etc. Others are also of functional importance,
but have evolutionary significance: horizontally transferred
regions, duplications, prophages, etc. Beyond this, there are
other genomic regions with specific structural properties
such as CpG islands, isochores, etc.

It is now possible to apply statistical tools to uncover the
underlying patterns of organization. Studies that identify and
characterize compositional heterogeneities within genomes
�4� yield a picture of genomes as patchy. Alternating regions
of DNA of variable length are locally homogeneous with
respect to specific statistical or biological properties, but on
larger scales DNA is heterogeneous �5�. This heterogeneity
in the distribution of statistical properties is supported by
experimental evidence on DNA melting and density gradient
centrifugation �6�.

Base composition heterogeneity can sometimes be de-
tected by elementary techniques such as a sliding window
analysis. This procedure is sensitive to the size of the win-
dow �7,8� and the manner in which the analysis is carried
out, apart from the fact that such methods apply only in the
simplest of cases. More sophisticated approaches to detect-
ing heterogeneity attempt to “segment” DNA into subse-
quences that are homogeneous with respect to a given crite-
rion. By construction each segment will be distinct from its
immediate neighbors, and the objective is to determine
which criterion to use that results in the segments having
biological significance. Tools that have been employed in
segmentation algorithms include hidden Markov models

�HMMs� and multiple change-point approaches, each of
which has been validated to some degree in earlier work �9�.
The use of HMMs in segmentation �10,11� involved the ap-
plication of a first-order model to short DNA sequences of
mitochondrial and phage genomes, which has later been ex-
tended to higher orders. Another study reported interesting
biological applications of segmentation using different orders
of HMMs �12�. A Bayesian multiple change-point approach
�13,14� yields segments that are optimal in some sense, but
these tend to be very short and have questionable biological
significance.

In the present paper we introduce Markov models for ge-
nomic segmentation. These are a family of change-point
methods that are sensitive to higher-order correlations in
DNA sequences, and that generalize an entropic segmenta-
tion technique �15,16� proposed earlier. Zeroth-order Markov
segmentation is identical to this earlier proposed method
�15,16� wherein the Jensen-Shannon �JS� divergence of
nucleotide distributions in subsequences is maximized. This
technique has found an application in the characterization of
varied aspects of genome organization. Applications of this
method have been made to analyze varied aspects of genome
organization such as determination of regions that are ho-
mogenous with respect to GC/AT or purine/pyrimidine com-
position �9,15,16�. The characterization of isochores �17,18�
in eukaryotic chromosomes, delineation of protein-coding
and noncoding regions �19�, finding the CpG islands, and the
detection of replication origin and terminus in bacterial ge-
nomes �8� are among several other instances that have been
addressed by this methodology.

Do mathematical or statistical methods for genome seg-
mentation uncover significant biological features? This is a
question that has been posed since the earliest such methods
were introduced, and so far segmentation strategies have
focused on characterizing homogeneity, and on generating
optimal segments �9�. Entropic segmentation using a
G+C-based measure has been successful in identifying CpG
islands and isochores from a large set of segments �8�. Simi-
larly, homogeneous regions obtained from a HMM-based
segmentation were found to be functionally important fea-
tures �12�. Clearly, the study of compositional homogeneity
is more relevant if such segments can be shown �say via
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annotation� to known biological features as can be done, say,
for isochore determination �20�. Similarly, gene identification
programs rely on describing coding sequences via composi-
tional measures �21�. However, other aspects of genome
composition are more subtle, and may require more sensitive
probes. For instance, dinucleotide frequency distributions
have been discussed by Karlin et al. �4� in the context of
genomic phylogenetic distances, and this is something that
cannot be discovered through simpler measures such as the
G+C content or the individual nucleotide distributions.

Our motivation in devising the present Markov model for
segmentation �MMS� is therefore to incorporate higher-order
correlations. These are able to characterize better the inho-
mogeneities inherent in a given genomic sequence. The
MMS method is presented in the next section, where we also
discuss criteria for judging the statistical significance of the
procedure within the model selection framework. In Sec. III,
the MMS is compared with segmentation using standard JS
divergence in two applications. We first apply the method to
chimeric sequences, namely, those that are artificially con-
structed; the constituent parts of these chimeric sequences
have distinct evolutionary histories, and since the segment
boundaries are known a priori, it is possible to judge the
accuracy of the procedure. We further apply these methods to
a complete prokaryote genome, E. coli K12, to examine the
biological relevance of the partition points. The paper con-
cludes with a discussion and summary in Sec. IV.

II. MARKOV SEGMENTATION

Bernaola-Galvan et al. �15� proposed a recursive segmen-
tation method that fragments a DNA sequence into homoge-
neous components �sometimes also termed “patches”� in a
top-down fashion. For a given sequence, it starts with locat-
ing the sequence position such that the adjacent subse-
quences are most distinct with respect to some predefined
compositional measure, and which satisfy statistical signifi-
cance. This process is repeated on the resulting two subse-
quences and so on until further segmentation of sequence
segments is not statistically significant. A measure that has
been used frequently in the past to judge this distinctiveness
is the JS divergence �22�, which is based on Shannon entropy
and is a symmetrized generalization of the Kullback-Leibler
divergence, another information-theoretic divergence mea-
sure.

Consider a symbolic sequence S of length N, constructed
from an alphabet A of size �,

S � �1�2 ¯ �N, �1�

where ��A and the subscript to � indicates the position in
S. We describe the sequence as deriving from a Markov
chain of order m. The probability of this sequence in an
mth-order Markov model is given by

P�S� = P��1, . . . ,�m� �
i=m+1

N

P��i	w = �i−m�i−m+1 ¯ �i−1� , �2�

where P�w� is the probability of occurrence of the word �or
subsequence� w of length m followed by any symbol � and

P��i 	w� is the transition probability from the word w to the
symbol �i. Here we have estimated the initial probability
P��1 , . . . ,�m� from the corresponding marginal probability
�23�. In applications to DNA sequence analysis, �=4, and
��A= �A,T,C,G�.

The JS divergence between two subsequences S1 and S2
resulting from the binary segmentation of a DNA sequence S
is given by �15,22�

D�S1,S2� = H�S� − �1H�S1� − �2H�S2� , �3�

where n1 and n2=N−n1 are the lengths of subsequences S1
and S2, respectively. �1 and �2 are weight factors summing
to 1. For segmentation analysis, weights proportional to the
length of the subsequences were found to be most appropri-
ate, �i=

ni

N . H�S� defines the Shannon entropy, given by

H�S� = − 

�

P���log2 P��� , �4�

where P��� denotes the probability of the nucleotide �. The
maximum likelihood estimate of this parameter is simply

P̂���=C��� /N, where C is the count of the nucleotide in the
sequence. Implicit in the above measure of divergence is the
assumption of the independence of occurrence of each nucle-
otide in S.

The JS divergence measure can be easily generalized to
account for the short-range interdependence of nucleotides.
Considering the sequence to be generated by a Markov
source of order m, the entropy function for the sequence is
given by

Hm�S� = − 

w

P̂�w�

�

P̂��	w�log2 P̂��	w� , �5�

where the first summation is over all possible distinct

m-mers, w. The estimates of the marginal probability P̂�w�,
and the transition probability P̂�� 	w� are obtained from the

counts of the oligonucleotides: P̂�w�=C�w · � / �N−m�,
P̂�� 	w�=C�w�� /C�w · �, and C�w · �=
�C�w��. It is easy to
see that the entropy function can also be written as Hm�S�
=−
w
�P̂�w��log2 P̂�� 	w�, which was used in computing
the value of the entropy function.

The generalized JS divergence is thus given as

Dm�S1,S2� = Hm�S� − �1Hm�S1� − �2Hm�S2� . �6�

Equation �6� reduces to Eq. �3� when m=0. The above ex-
pression for the JS divergence can be further generalized to
consider partitioning into any number of subsequences. The
procedure of segmentation involves the computation of JS
divergence between all possible pairs of segmented subse-
quences, and the maximum over all partition points is Dmax.
The sequence is segmented at this partition if and only if
additional criteria such as statistical significance and minimal
length are satisfied. A lower cutoff of 15 bp or more is typi-
cally applied so as to avoid obtaining numerous small seg-
ments of questionable significance. The former problem of
judging statistical significance is a more serious issue, and
two different criteria—the hypothesis testing and the model
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selection—have been used. These criteria are described in
the following subsections.

The binary segmentation is applied recursively. Starting
with the sequence S, one obtains subsequences S1 and S2, to
each of which the segmentation is applied, and so on. The
procedure is continued until further segmentation fails to be
statistically significant by any of the applied criteria.

A. Hypothesis testing

In the hypothesis testing approach, the statistical signifi-
cance smax�x� of a binary segmentation is determined by the
probability of obtaining a maximal divergence of Dmax or
less for random sequences of equivalent size, namely,

smax�x� = Prob�Dmax � x� . �7�

For the zeroth-order model, Grosse et al. �24� made the an-
satz

smax�x� = �F�„�2N�ln 2�x…�Ne, �8�

where F� is the �2 distribution with �= �k−1� degrees of
freedom. � is the scaling factor independent of N and Ne is
an effective length given by Ne=a�ln N�+b. The parameters
a, b, and � are obtained by fitting the theoretical distribution
to the empirical distribution of Dmax obtained through simu-
lations.

For the higher-order Markov models, we implemented the
Monte Carlo simulations suggested by Grosse et al. �24� to
obtain an approximate analytic expression for the probability
distribution of Dmax for Markov sources. The functional
form, obtained in the form of a chi-square distribution func-
tion with fitting parameters, was similar to that obtained by
Grosse et al. �24�,

smax
�m� �x� = �F�„�m2N�ln 2�x…�Ne

�m�
, �9�

with Ne
�m�=am�ln N�+bm. In the present work, we take the

number of degrees of freedom � to be 4m+1−1. This assumes
that there are 4m−1 marginal probability parameters and
4m+1−4m transition probability parameters �25� �see also
Billingsley �26�, p. 14�. Alternately, if we consider that we
have an ergodic Markov chain process, which tends to con-
verge to a solution irrespective of the choice of initial prob-
ability parameters, the number of degrees of freedom will be

FIG. 1. Histogram, smax�x�, of x=2N�ln 2�Dmax and their finite-
size approximations, smax� �x�, for the first-order Markov model.

FIG. 2. Difference between smax� �x� and smax�x� for the first-
order Markov model, which is a measure of the error associated
with the approximation.

FIG. 3. As in Fig. 1 but for the second order.

FIG. 4. As in Fig. 2 but for the second order.
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determined by the free transition probability parameters
alone. Then we have �=4m+1−4m �26–28�. With either
choice for �, the data can be fit to the empirical form, Eq. �8�,
with similar levels of accuracy.

We used Monte Carlo simulations wherein the lengths of
the simulated sequences N ranged from 500 b to 1 Mb. Best-
fit plots for the choice �=4m+1−1 are shown in Figs. 1 and 3
for first- and second-order MMS, while the errors are shown
in Figs. 2 and 4. For second order, a simulation of sequences
smaller than 10 Kb was avoided to obtain a better set of truly
random sequences. This gave an empirical distribution to
which the appropriate form was fit. For second-order seg-
mentation, �m is observed to have an additional correction,
which depends logarithmically to N, given by

�m = cm�ln N� + dm. �10�

With �=4m+1−4m, we found the fitting of functional form
to be essentially as good with comparable error �see Fig. 5�.
In practice though, this does not affect the actual segmenta-
tion results since the significance levels associated with the
test statistic x will be invariably the same. The computations
of this paper use �=4m+1−1 although, as discussed above,
the results would be identical with the alternate choice of �.
Tables I and II give the values of the fitting parameters esti-
mated by the Monte Carlo procedure for both choices of �.

B. Model selection framework

In the model selection framework �29� models of the
DNA sequence before and after a putative binary segmenta-

tion are compared. Before the segmentation, a single-
random-sequence model is used to describe the DNA se-
quence S, and after the segmentation a two-random-
sequence model is used to describe the resulting
subsequences.

Whenever the two-random-subsequence model is found to
be superior �as determined by separate criterion �see below��
to a single-random-sequence model, segmentation is per-
formed. The selection primarily is governed by two factors:
the model’s ability to fit the data and the complexity of the
model. A balance is sought between these two factors to
avoid both the overfitting or underfitting. Among the differ-
ent criteria used for model selection, the Bayesian informa-
tion criterion �CBIC� �30–32� is defined by

CBIC � − 2 ln�L̂� + K ln N , �11�

where L̂ is the maximum likelihood, K is the number of
parameters in the model, and N is the number of data points.
In theory, a superior model has a larger intergrated likelihood
and thus smaller value of CBIC.

Li �29� has shown that the expression of JS divergence
appears in obtaining the difference between CBIC of the can-
didate models. While this was done for the zeroth-order
model �m=0�, it can be easily generalized: considering the
mth-order model, the likelihood of the sequence before seg-
mentation is

L̂ = P̂��1 ¯ �m��
w

�
�

P̂��	w�C�w��

= P̂��1 ¯ �m��
w

�
�

P̂��	w��N−m�P̂�w�P̂��	w�. �12�

Taking logarithms, one obtains

ln L̂ = ln P̂��1 ¯ �m� + 

w



�

�N − m�

� P̂�w�P̂��	w�ln P̂��	w� , �13�

which further simplifies to

ln L̂ = ln P̂��1 ¯ �m� − �N − m�Hm�S� . �14�

After segmentation, the likelihood for the model is the

product of the likelihood of first subsequence L̂�1� and that

of second subsequence L̂�2�. As shown above one can simi-

larly obtain ln L̂�1� and ln L̂�2� for the two subsequences.
The change in the logarithm likelihood is

	L̂ = ln L̂�1� + ln L̂�2� − ln�L̂� . �15�

It can be easily seen that asymptotically for large N,

TABLE I. The values of parameters for the choice �=4m+1−1
estimated from Monte Carlo simulations fit to the theoretical distri-
bution of Dmax. m denotes the order of Markov model.

m am bm cm dm

0 2.44 −6.15 0.0 0.80

1 1.557 −2.195 0.0 0.946

2 1.130 −2.447 0.0023 1.025

TABLE II. Same as in Table I but for �=4m+1−4m.

m am bm cm dm

1 2.543 −4.77 0.0 0.848

2 2.39 −7.66 0.0029 0.841

FIG. 5. Error in the numerical approximation of empirical dis-
tribution for different degrees of freedom in second-order MMS.
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	L̂

N
= Dm�S1,S2� . �16�

For segmentation to be accepted, 	CBIC
0, which leads
to the condition

2NDm�S1,S2� � �K2 − K1�ln N . �17�

The parameters K1 and K2 for models before and after seg-
mentation are 4m+1−1 and 2�4m+1−1. Here, although the
results obtained by use of 	CBIC are comparable �8,29�, it
should be noted that the use of 	CBIC as a criterion for de-
ciding the change point has been questioned in earlier work
�33�.

III. APPLICATION AND ASSESSMENT OF MODELS

In the present case there is no existing benchmark against
which we can standardize the results of MMS. Studies that
have explored the association of biological features with ho-
mogeneous segments have been limited to coding �noncod-
ing� boundaries, CpG islands, and isochores �8�. As a conse-
quence, in this section we carry out an assessment of MMS
using sets of specifically constructed heterogeneous se-
quences. These chimeric sequences are described in the next
subsection. We also applied our methods to analyze a com-
plete genome to uncovering a known set of biological fea-
tures, and these results are described in Sec. III B.

A. Dataset of sequence constructs

Here we apply the above Markov models of segmentation
to sequences of known heterogeneity to assess the accuracy
and efficiency of the present procedure. The strategy for a

quantitative assessment of segmentation is based on the abil-
ity of the method to detect known boundaries. For this pur-
pose chimeric sequences are constructed from genomes of a
set of distantly related organisms that are known to differ in
their compositional organization. The dinucleotide relative
abundance �* �34–36�, which has been widely reported as a
measure of the genomic signature in prokaryotes as well as
eukaryotes, is taken as the discriminator: fragments of ge-
nomic DNA from closely related organisms have similar �*,
in contrast to distantly related species �34–36�. In simple
chimeras, we take two fragments of equal or unequal lengths.
These are generated by the concatenation of a pair of subse-
quences cA and cB of sizes lA and lB from genomes A and B.
We considered five pairs of prokaryotic genomes �see Table
III�. These range from nearly identical to very different GC
content.

We generate ensembles of n�=500 chimeras from each
pair of genomes �A ,B� with lA= lB. These are subjected to
segmentation using Markov models of order m=0,1 ,2. The
accuracy of segmentation is judged by how closely the actual
boundaries are identified. The chimeric sequences C are of
length L varying between 2 and 200 Kb. The sensitivity of
the segmentation model is determined by the number of suc-
cesses, i.e., the number of chimeras, np, segmented at the
midpoint in the very first step of recursion with an allowed
error d, i.e., l�= lA±d. This is given by

SN =
np

n�
, �18�

and d was taken to be 0.05L. Our results for segmentation
using the hypothesis-testing-based criterion are summarized
in Table IV.

TABLE III. Five genome pairs used to construct chimeric sequences. The difference in the GC% as well
as the dinucleotide relative abundance �� values are listed.

Pair Genome A Genome B 	�G+C�% � *

I B. fragalis A. marginale 5.4 112.45

II B. subtilis B. fragalis 2.0 85.53

III Halobacterium sp. D. radiodurans 1.0 224.0

IV B. subtilis P. aeruginosa 25.0 94.0

V B. subtilis M. tuberculosis 23.6 134.0

TABLE IV. Sensitivity of the Markov segmentation of chimeras composed of segments of equal size
using hypothesis testing. Pairs I–V are those listed in Table II.

Pair

2 Kb 40 Kb 200 Kb

Zeroth First Second Zeroth First Second Zeroth First Second

I 0.34 0.41 0.35 0.63 0.83 0.92 0.68 0.91 0.98

II 0.22 0.36 0.26 0.40 0.67 0.78 0.46 0.81 0.91

III 0.14 0.5 0.55 0.25 0.92 0.88 0.27 0.98 0.97

IV 0.87 0.88 0.88 0.98 0.97 0.98 0.99 0.98 0.98

V 0.92 0.88 0.86 0.99 0.99 0.99 1.0 1.0 1.0
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We find that in general the sensitivity increases with the
order of the Markov model, and for sufficiently long se-
quences the second-order model is clearly the most sensitive.
There is, however, a complicated dependence on the degree
of relatedness of the genomes. Exceptionally high sensitivity
is associated with even the zeroth-order model for pairs IV
and V �Table IV�, where the GC content differs by a large
amount, suggesting that this is one of the important determi-
nants of the performance of the model. The improvement in
sensitivity with sequence length is subtle for higher-order
models, but our prinicipal observation is that higher-order
Markov models of segmentation are particularly successful
in cases where the distantly related genomes have similar GC
content. For sequences of length greater than 200 Kb the
sensitivity values were over 0.9.

Sensitivity is also observed to rise with an increase in
sequence size for all orders of segmentation model. Longer
sequences allow for a better model construction �in terms of
having sufficient statistics to estimate the parameters�. In
contrast, smaller chimeric sequences of length �40 Kb
proved difficult to segment accurately. Segmentation of se-
quences within the model-selection framework gave compa-
rable results: sensitivity improves with an increase in Mar-
kov order as well as sequence size �Table V�.

The models were also assessed on mosaics with lA� lB,
which corresponds to the naturally occurring scenario since
segments are typically unequal in size. For fixed length of
the smaller fragment and L= lA+ lB, the performance of each
of the methods improves with an increase in L. However, the
performance also depends upon the absolute length of the
smaller segment, lA: so long as the smaller segment is longer
than a threshold size, the performance improves with an in-
crease in 	lB− lA	 �see Tables VI and VII�.

We further test Markov segmentation for complete recur-
sive segmentation using complex chimeric sequences con-
structed as follows. Five selected genome sequences are seg-

mented using zeroth-, first-, and second-order models as
discussed in Sec. II. Those segments which are common to
all orders of the segmentation are deemed homogeneous to
all orders. Variable numbers of such homogeneous segments
from these five genomes were randomly assembled into su-
per sequences to construct two complex chimeric sequences,

Ĉ1 and Ĉ2. These were then subject to recursive segmenta-
tion to examine whether the segment structure could be re-
constructed. We measure the performance in terms of both
sensitivity and specificity.

Results for chimeric sequence Ĉ1 are shown graphically
in Figs. 6 and 7 at confidence levels 0.99 and 0.95, respec-
tively, which demonstrate for the higher orders of MMS a
better correspondence of partition points to the boundaries. A

similar trend is observed for chimeric sequence Ĉ2, shown in
Figs. 8 and 9. If ncp is the number of correctly predicted
boundaries, np is the total number predicted, and nk is the
number of boundaries actually present, then the sensitivity is

SN =
ncp

nk
, �19�

and the specificity is

SP =
ncp

np
. �20�

The observed set of partition points suggests that each order
of MMS performed fairly well in detecting the existing
boundaries but varied in their accuracy of prediction. The
zeroth order had very poor accuracy, particularly at a 0.95
confidence level, while the second-order model was much
more accurate at both 0.99 and 0.95 confidence levels �Table
VIII�.

TABLE V. As in Table IV, but using Bayesian information criterion for segmentation.

Pair

2 Kb 40 Kb 200 Kb

Zeroth First Second Zeroth First Second Zeroth First Second

I 0.34 0.09 0.0 0.59 0.85 0.85 0.73 0.92 0.97

II 0.24 0.04 0.0 0.48 0.69 0.5 0.44 0.82 0.9

III 0.16 0.12 0.0 0.2 0.92 0.93 0.3 0.98 0.98

IV 0.88 0.8 0.01 0.98 0.98 0.97 0.99 0.99 0.98

V 0.88 0.78 0.02 1.0 1.0 1.0 1.0 1.0 1.0

TABLE VI. Sensitivity of Markov segmentation of chimeras constructed from genomes with nearly
identical GC composition. Indicated in the top row are lA+ lB, with fixed lA. Pair labels are those indicated in
Table III.

Pair

1 Kb+1 Kb 1 Kb+9 Kb 1 Kb+39 Kb

Zeroth First Second Zeroth First Second Zeroth First Second

I 0.34 0.41 0.35 0.4 0.5 0.5 0.35 0.43 0.47

II 0.22 0.36 0.26 0.27 0.34 0.37 0.28 0.35 0.33
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B. Segmentation of a complete genome

When a complete genome is subject to Markov segmen-
tation, even for a high significance level, there can be a very
large number of segments. The second-order MMS gives, for
example, over 1000 segments for the E. coli K12 genome.
Investigation of the biological importance of each segment is
infeasible as complete annotation of every genomic feature is
not available to date.

Our strategy has been to verify whether segment bound-
aries correspond to the loci of known biological features, and
thereby validate the segmentation procedure. Genomic re-
gions that arise from evolutionary events—such as the inser-
tion of foreign DNA—are among the most suitable candi-
dates for examining the relation between homogeneity and
biological features. Such horizontally transferred regions fre-
quently differ in compositional measures from the surround-
ing “native” genome with variation in the codon usage bias,
positional G+C composition, etc. �37�. Similarly, the dupli-
cations of a particular sequence involve insertions of the
same at newer locations in the genome and thus are most
likely to result in a marked change in the compositional mea-
sure at the boundaries. A number of such features have been
classified, and beyond horizontal transfer, there can be so-
called genomic islands, prophages, IS elements, etc. These
may even have overlapping boundaries, and here we assess
the performance of MMS applied to E. coli K12 in locating
the boundaries of such features.

E. coli K12 �38� is arguably the most well-studied
prokaryotic genome so far. As for any other organism, E. coli
K12 genome evolution has been dynamic and several under-
lying structures that result from evolutionary events such as
duplication, deletion, or insertion have been observed �39�.
Quantitatively, the amount of acquired DNA is estimated to
be about 12.8% �37� and there have been attempts to identify
such elements, many of them appearing as large mosaic re-
gions known as “genomic islands” �40–42�. Such genomic
islands can be identified, for instance, via the program
TRNACC �42�. To locate laterally acquired regions, the “en-
teric” server �43� was used to identify subsequences that are
uniquely present in E. coli K12 and sometimes also in its
closer relatives but absent in other species of Enterobacteri-
aceae. This genome is also known to contain many repetitive
elements such as Rhs, REP, LDR, etc. and a set of repeating
sequences of size �5 Kb was identified through standard
bioinformatics tools �44,45�. Coordinates of several ex-
amples of such features were obtained, and representatives
from each category were chosen for this test.

The performance of MMS in identifying the specified
boundaries was evaluated quantitatively; boundary predic-

TABLE VII. As in Table VI, but for lA=20 Kb.

Pair

20 Kb+20 Kb 20 Kb+180 Kb

Zeroth First Second Zeroth First Second

I 0.63 0.83 0.92 0.89 0.98 1.0

II 0.4 0.67 0.78 0.81 0.95 0.97

FIG. 6. Segments obtained from Markov segmentation of the

complex chimeric sequence Ĉ1 at a 0.99 significance level. The
sequences is comprised of five segments from five different ge-
nomes. The GC content of each segment is indicated. As can be
seen, the second-order method gives essentially exact results.

FIG. 7. As in Fig. 6 but for a 0.95 significance level. Again the
second order is exact even at this level.

FIG. 8. As in Fig. 6 but for the complex chimeric sequence Ĉ2

comprised of 13 segments. The above pattern is observed here too.
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tion to within 400 bases was deemed true, and anything
above that was termed a false prediction. �This threshold is
itself estimated from the frequency distribution of errors in
the prediction of change points for an ensemble of chimeric
sequences of different size �data not shown here�.� Results
are presented in Table IX for a total of 12 features with 24
borders. The second-order Markov model locates 22 of the
borders to reasonable accuracy, while the first-order model
finds 20, and the zeroth-order model misses an additional
three. We obtained an additional set of 40 boundaries of the
putative horizontally transferred regions to test the statistical
significance of our finding. We applied the sign test for large
samples as follows. The entries in the error column �Table
IX� were subtracted from the cutoff length �=400 bases� and
for each model order, if this value was positive, it was con-
sidered a success, otherwise a failure. Let p be the probabil-
ity of correctly detecting the features’ borders by a method.
The null hypothesis H0 and the alternative hypothesis H1 is
set as—H0: p=0.5, the success is merely due to chance; H1:
p�0.5, the success is indeed significant. Assuming the sam-
pling distribution of the statistics to be a normal distribution
with mean 
=Np and standard deviation �=
Np�1− p� �N
=64 and p=0.5�, the p values, which are defined as the larg-
est significance level at which null hypothesis is rejected, for
each of the model order were obtained. The p value for the
zeroth-order model with 34 successes �out of 64� was 0.6497
while for the first- and second-order models with successes
of 44 and 50, respectively, p values were �0.99. Considering

the significance thresholds of 0.95 and 0.99, which are fre-
quently used in arriving at a decision, the null hypothesis H0
was rejected in the case of model orders 1 and 2 while this
could not be rejected for model order 0. We thus infer that
the higher-order segmentation method is indeed more effec-
tive in locating the features’ borders compared to the conven-
tional zeroth-order segmentation method.

As evident from the results, the segmentation methods in
general are sensitive to the boundaries laid down by evolu-
tionary events. The Markov model’s performance, in particu-
lar, the second-order model, measured in terms of sensitivity,
is somewhat better than the others. In specific cases, though,
higher-order Markov models perform comparably or even
worse than the most simple zeroth-order model; this might
be a consequence of the inadequate representation of specific
words due to the small size of subsequences flanking a par-
ticular change point. This was also evident from the simula-
tion involving the segmentation of chimeric sequences. Fur-
ther studies of the higher-order Markov models are currently
underway.

IV. SUMMARY AND DISCUSSION

A number of segmentation methods have been developed
in recent years with the aim of computationally dissecting a
given genomic sequence into portions that correspond to spe-
cific structural and functional units. Different approaches to
this general problem have given some insight into genome
organization. The entropic segmentation method has consid-
erably helped in uncovering the underlying structures of ge-
nomes �8�. By incorporating higher-order Markov models,
the present work retains the simplicity of the JS divergence-
based approach while allowing the basic model to be more
sophisticated.

One of the drawbacks of the “1–2 segmentation” pro-
posed by Bernaola-Galvan et al. �15� is that the boundaries
obtained in the initial steps of the segmentation procedure
are retained in the subsequent steps of recursive segmenta-
tion although they may no longer be significant at later
stages where local heterogeneities are measured. Segmenting
a given nonstationary DNA sequence into two “supposedly
stationary” subsequences is at most an approximate approach
as the subsequences may in fact be nonstationary and thus an
estimation of the probability parameters from these subse-
quences is not completely a valid approach. However we
believe that at later stages of recursive segmentation this ef-
fect is minimized. While obtaining an “optimal” segmenta-

TABLE VIII. Sensitivity �SN� and specificity �SP� of methods tested on mosaic constructs �see text� from Anaplasma marginale �GC
=49.8�, Bacteroides fragalis NCTC 9343 �GC=44�, Escherichia coli K12 �GC=50�, Thermotoga maritima MSB8 �GC=45�, and Treponema

pallidum subsp. pallidum str. Nichols �GC=52�. The constructs are denoted by Ĉ1 and Ĉ2 and the S0 denotes the threshold significance level.

S0

m

Ĉ1 Ĉ2

0.99 0.95 0.99 0.95

Zeroth First Second Zeroth First Second Zeroth First Second Zeroth First Second

SN 0.75 1.00 1.00 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SP 0.60 0.80 1.00 0.50 0.80 1.00 0.86 0.80 0.92 0.57 0.60 0.92

FIG. 9. As in Fig. 8, for a significance level of 0.95.
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tion of a nonstationary sequence is challenging, there have
been some attempts in recent years to get an optimal com-
positional partitioning of DNA sequences using probabilistic
models, mainly, the hidden Markov models �HMMs�. The
HMM-based methods aim to find the most likely path of
hidden states that underlie a given DNA sequence using dy-
namic programming algorithms; while this approach is
promising and has been successfully applied in gene identi-
fication, it has yet to significantly accomplish deciphering
other regions of biological significance. The recently devel-
oped HMM-driven Bayesian method by Boys and Henderson
�46� generates segments having genes in the same direction
of transcription. Nicholas et al. �12� obtained similar results
using their HMM approach. Another approach that generates
an optimal segmentation using a dynamic programming
method gives many very short sequences �sometimes of just
one or two nucleotides� whose significance is often question-
able �14�. Notwithstanding the drawbacks of the rather ap-
proximate approach of Bernaola-Galvan et al. �15�, it has
been extensively used in deciphering a number of functional

or structural features in genome sequences. The use of di-
nucleotide or trinucleotide frequencies as a statistical deter-
minant of sequence features makes it far more effective than
the conventional approach as the application to sequence
constructs as well as real genome sequence confirms.

A proper test of segmentation strategies is made difficult
by the paucity of biological reference data with accurately
characterized segmental structure. The few sequences that
are known to be embedded with segments such as isochores
in the major histocompatibility complex �MHC� sequence or
experimentally confirmed CpG islands can be successfully
analyzed with any order model since these features are com-
positionally fairly simple. We constructed chimeric se-
quences in order to demonstrate the basic methodology of
Markov segmentation, and then applied this to the E. coli
K12 genome to detect known features with biological
significance. Higher-order Markov models provide sensitiv-
ity not only to overall base composition, but also to higher-
order organizational aspects such as di-, tri-, or oligonucle-
otide usage. As in gene identification problems, there may be

TABLE IX. Segmentation at significance S0=0.99 of the E. coli K12 genome to detect known genomic
features. Columns 3–5 are the errors in prediction of the feature boundary. Those that meet the criterion of
being below the specified threshold are shown in boldface.

Label
Position of

known features

Error in prediction of feature boundary

Zeroth order First order Second order

Category: Putative horizontally acquired regions

H1 �Start� 764372 136 115 116

H1 �End� 770608 7 0 152

H2 �Start� 2338419 2473 1072 97

H2 �End� 2342886 13 44 12

H3 �Start� 2478412 282 217 366

H3 �End� 2493555 1549 131 31

Category: Duplication

D1 �Start� 223625 396 202 189

D1 �End� 228880 106 115 106

D2 �Start� 4033409 363 243 371

D2 �End� 4038664 146 138 131

D3 �Start� c2729507 2332 429 374

D3 �End� c2724086 59 12 24

Category: Genome islands

aspV �Start� 237008 36 131 3

aspV �End� 239419 127 77 55

thrW �Start� 262171 2572 89 90

thrW �End� 302055 246 247 248

argU �Start� 564023 286 90 14

argU �End� 585323 957 173 1063

Category: Cryptic prophages

CP4-6 �Start� 262182 583 100 101

CP4-6 �End� 296489 100 118 26

Pe-14 �Start� 1194346 370 250 340

Pe-14 �End� 1210646 1200 1200 4000

Rac �Start� 1409949 27 356 353

Rac �End� 1433008 48 828 316
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a trade-off between model order and model sensitivity. In
future work we hope to study these aspects of Markov
segmentation.
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